منابع مشابه
The word problem for free adequate semigroups
We study the complexity of computation in finitely generated free left, right and two-sided adequate semigroups and monoids. We present polynomial time (quadratic in the RAM model of computation) algorithms to solve the word problem and compute normal forms in each of these, and hence also to test whether any given identity holds in the classes of left, right and/or two-sided adequate semigroups.
متن کاملOn Rees Matrix Representations of Abundant Semigroups with Adequate Transversals
The concepts of ∗-relation of a (Γ-)semigroup and Γ̄-adequate transversal of a (Γ-)abundant semigroup are defined in this note. Then we develop a matrix type theory for abundant semigroups. We give some equivalent conditions of a Rees matrix semigroup being abundant and some equivalent conditions of an abundant Rees matrix semigroup having an adequate transversal. Then we obtain some Rees matrix...
متن کاملRetracts of Trees and Free Left Adequate Semigroups
Recent research of the author has studied edge-labelled directed trees under a natural multiplication operation. The class of all such trees (with a fixed labelling alphabet) has an algebraic interpretation, as a free object in the class of adequate semigroups. We consider here a natural subclass of these trees, defined by placing a restriction on edge orientations, and show that the resulting ...
متن کاملA Characterization of Adequate Semigroups by Forbidden Subsemigroups
A semigroup is amiable if there is exactly one idempotent in each R⇤-class and in each L⇤-class. A semigroup is adequate if it is amiable and if its idempotents commute. We characterize adequate semigroups by showing that they are precisely those amiable semigroups which do not contain isomorphic copies of two particular nonadequate semigroups as subsemigroups.
متن کاملRight Simple Subsemigroups and Right Subgroups of Compact Convergence Semigroups
Clifford and Preston (1961) showed several important characterizations of right groups. It was shown in Roy and So (1998) that, among topological semigroups, compact right simple or left cancellative semigroups are in fact right groups, and the closure of a right simple subsemigroup of a compact semigroup is always a right subgroup. In this paper, it is shown that such results can be generalize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 1981
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500016497